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The b1icrowave Anisotropy Probe (MAP) launched successfully on June 30, 2001 and is presently in 
a Lissajous orbit about the Sun-Earth libration point L2. To avoid Earth shadows at L2, the Sun-Earth- 
Vehicle (SEV) angle of MAP has to be-greater than 0.5 deg for an extended mission of four years. An 
equation is derived for the SEV angle in terms of the phase angle, frequencies and amplitudes of the 
Lissajous. The SEV angle is shown to oscillate with a period of 90.4 days within an amplitude envelope of 
period 13.9 years. A range of phase angles that avoids shadows is identified. MAP'S present phase angle is 
within this range and will avoid shadows for approximately 5.8 years. 

Introduction 
The Cosmic Microwave Background (CMB) radiation 
which permeates our universe was originally observed 
unexpectedly in 1965 by Arno Penzias and Robert 
Wilson at Bell Laboratories [l]. The CMB radiation 
has a thermal spectrum with an average temperature 
of 2.7 Kelvin and is believed to be the leftover radi- 
ation from the Big Bang. In 1992, NASA's Cosmic 
Background Explorer (COBE) [2] satellite provided 
the first experimental evidence that the microwave 
glow is not uniformly 2.7 Kelvin, but varies by as 
much as 100 millionths of a Kelvin above or below 
the average - evidence of clumps and wrinkles in the 
very early universe. The follow-up mission to COBE, 
the Microwave Anisotropy Probe (MAP), will mea- 
sure the temperature fluctuations of the CMB radi- 
ation with much higher resolution, sensitivity, and 
accuracy than COBE in the hope of answering unre- 
solved cosmological questions [3]. 

There exists a point, in the direction opposite the 
Sun, approximately 1.5 million kilometers from the 
Earth called the L2 libration point. If a satellite at 
this point orbits the Sun with the same angular veloc- 
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ity as the Earth, its centripetal acceleration is equal 
to the sum of the Earth and Sun's gravitational ac- 
celeration. In other words, the spacecraft remains 
stationary at L2 in the Sun-Earth rotating frame. At 
L2, there is no interference from the Earth's atmo- 
sphere or radiation belts. Furthermore, one does not 
have to actively cool the instruments as in the low- 
Earth COBE mission because the temperature at L2 
is already low. With a lunar gravity assist, a satellite 
can be propelled to L2 at a low Delta-V cost. Once 
at L2, a Lissajous orbit can be maintained with small 
stationkeeping maneuvers (approximately 40 cm/s of 
Delta-V every three months). For all the above stated 
reasons, a Lissajous orbit about L2 was selected as 
the mission orbit for MAP. 

MAP launched on June 30, 2001 and its trajectory 
to L2 is shown in Figure 1. It includes three phasing 
loops around the Earth, a lunar swingby and a Lis- 
sajous orbit about L2. There are many possible tra- 
jectories to L2, each leading to a different Lissajous. 
However, the possible choices are greatly reduced by 
mission requirements. MAP needs to avoid Earth 
and Lunar shadows as well as maintain communica- 
tion with NASA's Deep Space Network (DSN). These 
requirements translate into constraints on the Sun- 
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Earth-Vehicle (SEV) angle (the angle $ shown in 
Figure 3) .  For example, Earth shadows constrain the 
SEV angle to be greater than 0.5 deg. It is therefore 
imperative to predict how the SEV angle varies with 
time, which is the main goal of this paper. 

We begin by solving for quantities that enter into 
the calculation of the SEV angle. From the periodic 
solutions of the linearized equations of motion we de- 
termine that the 2 and y components oscillate with 
the same frequency wxy (period of 0.4861 years) and 
the z component oscillates with wz (period of 0.5023 
years). The two periods are slightly different, lead- 
ing to a Lissajous orbit about L2. We then derive 
an equation for the SEV angle as a function of time. 
The equation reveals that the SEV angle exhibits a 
beat pattern: the amplitude of oscillations does not 
remain constant and oscillates with its own frequency 
- called the beat frequency. It is shown that the two 
frequencies that govern the SEV angle are not wxy 
and w, but their sum wf = wxy + w, and diflerence 
w- = wZy - w,. The SEV angle oscillates with w+ 
equivalent to a period of 90.3 days and the amplitude 
oscillates with w- equivalent to a much longer period 
of 13.9 years. Simply put, the SEV angle oscillates 
within an envelope of period 13.9 years. 

A Lissajous is said to  be opening when the SEV 
envelope minimum is increasing. Otherwise it is said 
to be closing. The amplitude oscillations cause the 
Lissajous to alternate between opening and closing. 
We show that MAP must enter the Lissajous while it 
is opening i f  it is to avoid Earth shadows for an ex- 
tended mission of four years. One of the parameters 
that describes a Lissajous is the phase angle q5 which 
is related to  the initial conditions of the z component 
of the Lissajous (see equation (24)). We show that 
the opening or closing of a Lissajous is dependent 
on its phase angle: when the phase angle is between 
K and n/2, the Lissajous is opening. MAP’S phase 
angle is presently in this range and we show that it 
will avoid Earth shadows for approximately 5.8 years 
starting from the first xz plane crossing. 

The Sun-Earth Libration Point L2 
In this section we outline briefly how to determine nu- 
merically and analytically the location of the libra- 
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Figure 1: Trajectory to L2 
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tion point L2 for the Sun-Earth/Moon system (for 
more details on the L2 libration point we refer the 
reader to [4, 5 ,  61). We work in dimensionless units 
where the Sun-Earth distance is 1,  the mass of the 
Sun is M s  = 1 - p  and the mass of the Earth + Moon 
is ME = p so that M s  + ME = 1. The latest value 
of Ms/ME is 328900.56 with an uncertainty of f0.02 
[7]. The value of p = 1 / ( 1  + M s / M E )  for the Sun- 
Earth/Moon system is therefore 3.0404234 x 
The most convenient frame in which to study motion 
about L2 is the Sun-Earth rotating frame where the 
2 axis points along the Sun-to-Earth line (see Figure 
1)  and the y axis is in the ecliptic plane perpendic- 
ular to 2 (pointing in the direction of the Earth’s 
motion about the Sun). The z axis completes the 
right-handed coordinate system. The distance T from 
Earth to L2 is governed by the quintic equation [5 ] :  

Using the MATLAB root finder with p = 3.0404234 x 
the real solution to (1)  is T = 0.010078240 (this 

value is in agreement with the value quoted in [8] 
which contains a comprehensive set of libration-point 
parameters). In 1826, Abel proved that the solution 
to the general quintic cannot be written as a finite 
formula involving radicals. However, for p << 1 an an- 
alytical approximation to  (1)  can readily be obtained 
and yields results close to the numerical one (the case 
p << 1 applies to  all Sun-Planet libration points). To 
find an analytical solution it is convenient to rewrite 
the quintic equation (1) in the following form 



The function f ( r )  is a monotonic increasing function, 
has no upper bound and has a minimum value of 
zero (which occurs at T = 0). Therefore, the equa- 
tion f ( r )  = p must have one and only one real solu- 
tion. Furthermore, if p << 1 then T lies in the range 
0 < T << 1. Expanding f ( r )  yields 3 r 3  + 0(r3). 
Keeping only the first term in this expansion yields 
the following analytical approximation to (2) 

T M (p/3)1/3. (3) 

The above analytical approximation reveals that the 
L2 distance grows as the cube root of p for p (< 1. 
Let us now compare the analytical with the numer- 
ical solution for the Sun-Earth/Moon system. For 
p = 3.0404234 x the analytical approximation 
(3) yields T = 0.010044715 which differs from the nu- 
merical solution of T = 0.010078240 by 0.33%. The 
analytical approximation (3) is therefore very accu- 
rate for small p. Note that we do not quote T as 0.010 
but keep eight significant figures. We will show later 
that the difference between 0.010 and 0.010078240 is 
significant for the calculation of the frequencies gov- 
erning the Lissajous and the SEV angle. However, 
most other calculations in this paper are not as sen- 
sitive and using T = 0.010 works well. 

Earth Shadows and the SEV angle 
During MAP’S orbit about L2, one of the require- 
ments of the mission was for the satellite to avoid 
umbral and penumbral shadows. The umbral and 
penumbral shadows are depicted in Figure 2. No di- 
rect sunlight reaches the umbral region and therefore 
the MAP satellite must certainly avoid this region. 
It turns out that the umbral shadow falls just short 
of reaching L2 and hence causes no problems for the 
MAP satellite. Let z be the distance from the center 
of the Earth to  where the umbral shadow terminates. 
Let RE be the radius of the Earth, R s  be the radius 
of the Sun and the Sun-Earth distance be equal to 1. 
The geometry leads to  the following equality 

- R~ - 6378 - 9.16 x 10-3 (4) I + X  Rs 695990 

whose solution is x = 0.00924. The length x of the 
umbral shadow is less than the Earth-L2 distance of 

Figure 2: Umbral and Penumbral Shadows 
umbral cone 
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penumbral region: partial shadow \4 
T = 0.010 and therefore MAP does not encounter um- 
bral shadows. Note that this result is valid for any 
Sun-Earth distance on the Earth’s elliptical journey 
around the Sun. This is true because the values of 
x and T are in dimensionless units and are indepen- 
dent of the Sun-Earth distance. It is clear from Fig- 
ure 2 that the SEV angle S must be above a certain 
value to avoid the penumbral shadow. The penum- 
bral shadow is a partial shadow and therefore less 
severe than the umbral shadow. Nonetheless, it was 
considered desirable to avoid this region altogether. 
We now determine how it constrains the SEV angle 
of MAP. Let SA denote the distance from the Sun 
to point A and let AE denote the distance from A to 
the Earth. Again, the geometry leads to  the following 
equality 

(5) 

whose solution is AE = 9.08 x (where AE+SA = 
1). The mean Sun-Earth distance is 1.495 x lo8 km 
so that the Earth radius RE in dimensionless units is 
6378/1.495 x lo8 = 4.26 x loe5. The angles 6 and o 
are small so that 6 x D / r  and o M D / ( T  + AE). The 
angle a! is equal to sin-’(RE/AE) = 4.69 x rad. 
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The angle 6 is therefore 

S X  a (‘ + AE) = 8.94 x rad = 0.51 deg . 
T 

where T = 0.010 was used. As long as MAP maintains 
an SEV angle above 0.5 deg during its oscillations 
about L2 it avoids Earth shadows: both umbral and 
penumbral. 

Frequencies of Lissajous Orbit 
In this section we solve the linear differential equa- 
tions governing motion at L2. In particular, we ob- 
tain the frequencies and the relationship between the 
5 and y amplitudes that govern the Lissajous orbit 
and enter into the calculation of the SEV angle. Con- 
sider the point L2 in Figure 1 to be at (O,O,O). Let 
TI  be the Sun-L2 distance and T be the Planet-L2 
distance. In dimensionless units TI - T = 1. The set 
of linearized differential equations governing the z, y 
and z motion about L2 are [5]: 

5 - 2 y  = ~ ( l + 2 D )  ( 7) 
y + 2 i  = y ( 1 - D )  (8) 

2 = -Dz  (9) 
where 

For the Sun-Earth/Moon system, p = 3.0404234 x 

yields D = 3.9405. Had we used T = 0.010 and TI = 
1.010 the value of D would have been 4.011, which 
is a significant change from 3.9405. For the rest of 
the calculations in this paper we do not need to keep 
results to  this accuracy, which is why D is quoted 
to only five instead of eight significant digits. The 
equation governing the z motion is easily solved and 
yields z = A, sin(w, t + 4) where A, is the amplitude, 
4 is the phase angle and 

T = 0.010078240, TI = 1.010078240 and (10) 

w, = fi = d m  = 1.9851 (11) 

is the frequency. The period of the z motion is there- 
fore 1/1.9851= 0.50375 years ( x  6 months). We now 
seek periodic solutions to the coupled z and y equa- 
tions (7) and (8). Let y = A,sin(w,, t + &,). Let 

the xz plane crossing (y = 0) occur at t = 0 so that 
$,, = 0 or ?r (depending on whether y is positive or 
negative at y = 0). For the MAP mission, the lunar 
flyby occurs in the negative y region and the satel- 
lite is then propelled towards y = 0 so that y > 0 at 
y = 0. Hence, 4zy = 0. Therefore, y = A, sin(w,, t ) ,  
y = w,, A, cos(w,, t )  and ji = -w& A, sin(wxy t).  
We can readily solve the x and y coupled equations 
if we let z = A, cos(wx,t). Equation (7) yields 

and the (8) yields 

A, - -w:, - 1 + D 
-- 
A, 2 wxy 

Equating (12) with (13) one obtains the quartic equa- 
tion 

W & + ( D - ~ ) W : , + ( ~ + D - ~ D ~ )  = O .  (14) 

Using the MATLAB root finder, the positive real so- 
lution to (14) with D = 3.9405 is 

wXy = 2.0570. (15) 

The period of the x and y motion is therefore 
1/2.0570 = 0.4861 years, i.e. approximately 5.83 
months. Substituting w,, = 2.0570 into either (12) 
or (13) yields Ax/A, = -0.3138. Therefore the peri- 
odic solutions to (7), (8) and (9) are: 

x = -0.3138Ay cos(2.0570t) (16) 

y = A, sin(2.0570t) (17) 
(18) z = A,  sin(1.9851t+ 4 ) .  

Note that when x and y complete one cycle, z has not 
quite completed its own cycle because the frequency 
in the zy  and z directions differ slightly (2.0570 versus 
1.9851). Therefore, the motion at  L2 is only quasi- 
periodic even though the components x, y and z are 
each periodic functions. Such a trajectory governed 
by two different frequencies is called a Lissajous orbit 
in contrast to a halo orbit where the two frequencies 
are equal. Later we will see that the slight difference 
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in the xy and z frequencies is actually the reason why 
the SEV angle exhibits a beat pattern. 

The amplitudes A, and A,  and the phase angle q5 
are determined by the initial conditions: y, z, x and 
z at t = 0. Note that the x and y equations (16) and 
(17) are coupled so that when y = 0, the 2-velocity 
x = 0. In other words, to have quasi-periodic motion 
at L2, the x-velocity of the satellite (i.e. the velocity 
along the Sun-Earth line) must be close to zero when 
it crosses the xz plane at y = 0. If this condition is 
not met, the satellite may not enter a quasi-periodic 
orbit and can easily escape from L2. In fact, the 
libration point L2 is not a point of stable equilibrium: The periodic solutions (16), (17) and (18) are recov- 
besides the periodic solutions there exist exponential ered when the exponential solutions are suppressed 
solutions for the x and y motion. If one substitutes 

Figure 3: SEV Angle 
vehicle 

Sun 

(not to scale) 

C2 = -0.0961 vZo + 0.3436 20 

(27) +0.0524 W,O 

i,e. C, = c2 = in (19) and (20). If cl = c2 = 
2 = Cl ek 
(7) and (8), One Obtains the Same quartic as in (I4) implies that q5zy given by (22) is zero. So 

that One chooses the 
real solutions. This Yields 

and Y = C2 ek the X and Y equations then it follows from (26) and (27) that v,, = 0. This 
pre- 

instead Of the viously mentioned, 21, must be close to  zero at the 
= f2.484 and ‘1 = xz-plane crossing to obtain a Lissajous orbit at L2. 

~1 .834C2 .  The most general solution to  the linear 
differential equations (7), (8) and (9) is: 

To summarize, L2 is an unstable point that can 
support a quasi-periodic orbit. The x, y and z equa- 
tions of motion have both exponential and periodic 
solutions. The exponential solutions are largely sup- 

c1 e2’484t + 1.834 c2 e-2.484t(19) pressed if the x-velocity a t  the xz plane crossing is 
y = A, sin(2.0570 t + dXy) + C1 e2.484 zero. The frequency of the periodic oscillations in 

(20) the x and y direction is wxy = 2.0570 and in the z 
direction is wz = 1.9851 (equivalent to  a period of 

z = A,  sin(1.9851 t + 4). (21) approximately 6 months in both cases). The two fre- 
in (19), (20) and (21) can be ex- quencies are slightly different and the resultant mo- 

x = - 0.3138 A, ~o~(2.0570 t + &,) 

+ C2 e-2.484 

The six 
pressed in terms of the initial conditions at the first 
xz plane crossing (y=O): z = xo,vz = vz0, v, = vyo, 
z = zo and v, = vz0. The constants are: 

tion is a LissajOus Orbit. 

Beat Pattern of Sun-Earth-Vehicle 
(SEV) Angle 

In this section we derive an expression for the Sun- (22) 212 0 

4.316 20 + 3 . 1 8 7 ~ ~ ~  
tan$,, = 

_. 

A, = 

0.1924v& + (4.31620 + 3 . 1 8 7 ~ ~ ~ ) ~  (23) 

(24) 
1.9851 zo 

vzo 
t a n 4  = 

C1 = -0.0961 vzo - 0.3436 xo 

-0.0524 vYo (26) 

Earth-Vehicle (SEV) angle as a function of time for 
oscillatory motion at L2. The expression is written 
in terms of two frequencies, w+ and w- ,  which are 
the sum and difference of wzy and w, respectively. 
The frequency w+ describes the oscillations of the 
SEV angle while w- ,  called the beat frequency, corre- 
sponds to the oscillations of the amplitude envelope. 
The SEV angle II, is given by 

&G7 tan$ = 
r 
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where T = 0.010 is the Earth-L2 distance (see Figure 
3). To determine the SEV angle $, we need to cal- 
culate y2 + z2 .  For periodic motion about L2, y and 
z are given by (17) and (18) i.e. 

y = A, sin(w,, t )  ; z = A,  sin(w, t + 4) (29) 

and the sum of their squares yields 

y2 + z2 = Ai sin2(w,, t )  + A: sin2(w, t + 4) . (30) 

It is clear from (30) that y2 + z 2 ,  and hence the SEV 
angle, has oscillations. However, it is not immedi- 
ately apparent from (30) what the frequency is of 
those oscillations. It is not either wZy or w, but some 
combination of the two. It is therefore worthwhile to 
rewrite equation (30) in a different form where the 
frequencies governing the SEV angle are apparent. 
The first step is to rewrite (30) as: 

Substituting (34) and (35) into (31) yields 

y 2 + z 2 =  

(A;  + -43 (1 - cos(w+ t + 4) cos(w- t - 4)) 
2 

(A;  - 4)  sin(w+ t + 4) sin(w- t - 4) .  (37) 
2 + 

Equation (37) is our final expression for y2 + z2 .  It 
is now apparent that the two frequencies that govern 
the oscillations of y2 + z2 are w+ and w- which are 
the sum and difference of w,, and w, respectively. 
The SEV angle II, given by (28) is proportional to the 
square root of y2 + z2 and therefore oscillates with 
the same frequencies as g 2  + z2.  For the Sun-Earth 
L2 libration point, w,, = 2.0570 and w, = 1.9851. 
Substituting these values into (36) yields 

w+ = 4.0421 ; w- = 0.0719 (38) 

AS + A: (sin2(w,, t )  + sin2(w, t + 4)) 
2 

(sin2(w,, t) - sin2(w, t + 4)). (31) 

corresponding to periods of 2 y + z 2  = 
1 

AS - A: 
+ 2  

T+ = I years = 90.36 days (39) 4.0421 

Using the trig identities 

sin2 61 - sin2 6 2  = sin(& + 02) sin(& - 6 2 )  (32) 

and 

cos2 d1 - sin2 6 2  = cos(dl + 6, )  cos(81 - 6 2 )  (33) 

one obtains 

and 

sin2 (wzy t )  - sin2 (w, t + 4) = 

sin((w,, + w,)t + 4) sin((w,, - wZ)t  - 4.(35) 

Define the following quantities: 

- 
W + ~ W , ~ + W ,  ; w E W , ~  -w, (36) 

and 
years = 13.9 years . (40) 

A plot of the SEV angle versus time calculated using 
(37) and (28) is shown in Figure 4. The way to  read 
this figure is as follows: time increases to  the right 
with the location of t = O  situated at the appropriate 
phase angle on the x-axis. For example, if a Lissajous 
has a phase angle of ~ / 4 ,  the SEV angle begins at 
that location and then moves to the right. Note that 
the amplitude envelope of the SEV angle does not re- 
main constant but varies periodically. A plot like Fig- 
ure 4 with an oscillating amplitude envelope is said 
to exhibit a beat pattern and the frequency of the 
oscillations is called the beat frequency. The regular 
oscillations correspond roughly to w+ and the time 
between adjacent peaks is M 90.36 days. The enve- 
lope oscillations correspond roughly to w- (the beat 
frequency) and are represented by the dashed line. 
These oscillations have a period of M 13.9 years. In 
Figure 4, peak to peak on the dashed curve repre- 
sents one half of the period i.e. 6.95 years. This is 

1 
0.0719 

T -  = - 
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because the SEV angle is always a positive quantity 
and repeats itself every half cycle. The sine/cosine 
functions undergo a full cycle every 13.9 years and 
are positive for half a cycle and negative for half a 
cycle. The Lissajous is in a different orientation in 
each of the two half cycles but the value of the SEV 
angle, being always positive, does not distinguish be- 
tween these two half cycles. 

The phase angle 4 of the Lissajous determines 
whether it is opening or closing at t = 0. A n  im- 
portant result stemming f rom equation (37) is that 
the Lissajous i s  opening when the phase angle is be- 
tween IT and n/2 and closing between n/2 and 0 (see 
Figure 4). It takes the Lissajous a maximum of 
(13.9/4) = 3.47 years to close. In other words, when 
the lissajous is closing, the SEV angle reaches a value 
of zero in less than 3.47 years (see Figure 4). The ex- 
tended mission of MAP is to last four years. This is 
greater than the maximum closing time of 3.47 years. 
We have previously seen that the SEV angle should 
be greater than 0.5 degrees to avoid penumbral shad- 
ows. Therefore, if the MAP satellite enters the Lis- 
sajous while it is closing, it will reach a zero SEV 
angle before the four year mission is complete and 
hence encounter penumbral shadows. In other words, 
if MAP enters a closing Lissajous it is sure to cross 
the 0.5 degree line before four years are completed. 
It is therefore crucial that the M A P  satellite enter an  
opening Lissajous. This  impZies that the phase angle 
of M A P  must  be between n and n/2. 

We briefly digress here to discuss some of the sym- 
metry properties of the SEV angle. The equation for 
y2 + z2 given by either (30) or (37) is invariant under 
two sets of transformations: 

t - + - t  

4 + - 4  

Therefore, if we propagate backwards with a new 
phase angle given by either of the two transforma- 
tions in (41), the SEV angle (28) does not change. For 
example, the SEV angle for a Lissajous with phase 
angle equal to  n/4  when propagated forwards is indis- 
tinguishable from one that has a phase angle of -n/4 
or 3x14 propagated backwards. There are phase an- 
gles however, that play a dual role where propagating 

forwards or backwards yields the same result. These 
phase angles are integer multiples of 7r/2: they do not 
change under either of the two phase angle trans- 
formations (41) (e.g. 7r/2 under 4 + n - # yields 
r/2 and 7r under 4 + -4 yields -T which is the 
same angle). For these, the SEV angle is symmetric 
under time-reversal. Note that the plot in Figure 4 
is mirror-symmetric at phase angles that are integer 
multiples of 7r/2. If one starts at those phase angles 
it does not matter whether you move to the right 
(propagate forwards) or move to the left (propagate 
backwards). 

MAP’S Lissajous 
MAP first crossed the xz plane at L2 on January 2, 
2002 at 8:50 UTC time. We consider this to be the 
start of the Lissajous orbit, i.e. we set t = O  when y=O. 
There are altogether five parameters that enter (37) 
for y2 + z2 (from which the SEV angle is calculated). 
The five parameters are the two frequencies w+ and 
w-,  the two amplitudes A, and A, and the phase 
angle 4. The value of the frequencies have previously 
been obtained and are wf = 4.0421 and w- = 0.0719. 
These frequencies are determined only by the Sun- 
Earth/Moon geometry and masses and are therefore 
independent of the particular Lissajous at L2. The 
other three parameters are obtained by fitting the 
ephemeris file of the actual MAP trajectory to the 
2, y and z equations of motion (16),(17) and (18). 
Our least-squares fit to the actual MAP ephemeris 
data yield the following results: A, = 5.88 x 
A, = 1.58 x and 4 = 2.88 rad. Note that 
4 = 2.88 rad is between 7r and 7r/2 rad, and this 
implies that the MAP Lissajous should be opening 
at t = 0. The values of A,, A,  and 4 were then inde- 
pendently verified with equations (23), (24) and (25). 
In other words, we extracted the values of 20, ZO, vzo, 
v,, and v,, from the ephemeris data of the MAP Lis- 
sajous when y was zero. We substituted these val- 
ues into equations (23),(24) and (25) and calculated 
A, = 5.83 x A,  = 1.59 x and 4 = 2.91 
rad. The two methods therefore agree to  within 1%. 

The values of w+, w- ,  A,, A, and 4 were then sub- 
stituted in (37) and the SEV angle was calculated via 
equation (28). A plot of the predicted SEV angle of 
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MAP is shown in Figure 5. As predicted, the Lis- 
sajous is opening at t = 0 (corresponding to  January 
2, 2002 8:50 UTC). Note that the SEV angle starts 
above the 0.5 deg line and crosses it 5.8 years later. 
This implies that the MAP satellite will avoid Earth 
shadows for the extended mission of four years. 

A plot of the observed/true SEV angle of MAP 
starting on January 2, 2002 8:50 UTC and extending 
to the fourth xz plane crossing predicted to  occur on 
September 26, 2002 20:16 UTC is shown in Figure 6. 
This is a time span of 0.733 years. The SEV angle 
in this case is taken directly from the MAP trajec- 
tory, which includes the latest orbit determination 
solution and the updated coefficient of reflection for 
the modeling of the solar radiation pressure (impor- 
tant when extending the trajectory to September 26, 
2002). Compare the “observed” plot, Figure 6, to the 
“predicted” plot, Figure 7, over the same time period 
of 0.733 years. The plots are almost identical in shape 
and in value. The observed plot has an initial SEV 
angle of 2.47’, an SEV angle of 9.56’ at the first peak 
and a peak to  peak time of 91.3 days. The predicted 
plot has an initial SEV angle of 2.35’, an SEV angle 
of 9.52’ at the first peak and a peak to peak time of 
91.6 days. Both peak to  peak times are very close 
to the value of T+ = 90.4 days. The two plots are 
almost identical even though the predicted plot does 
not include the effects of solar radiation pressure. 

The small difference between the numerical value 
of 91.6 days obtained by plotting (37) and T+ = 90.4 
days is due to the fact that the wf oscillations are 
slightly perturbed by the w- oscillations in (37). The 
effect is not very pronounced because the wc fre- 
quency is 56 times larger than thew- frequency. One 
can easily compute numerically where the crests or 
troughs of the SEV angle occur by setting the deriva- 
tive with respect to time of equation (30) to zero, 
yielding 

wz, Ai sin(2 w,, t )  + w, A: sin(2(w, t + 4) )  = 0. 

Substituting w,, = 2.057, w, = 1.9851, A, = 
5.88 x and 4 = 2.88 rad 
into (42), the first four positive numerical solutions 
are t= 0.0184, 0.1438, 0.2693 and 0.3948 years. The 
first and third solutions correspond to the first two 

(42) 

A,  = 1.58 x 

troughs (minima) in Figure 7 and the second and 
fourth solutions correspond to  the first two crests 
(maxima) in Figure 7. Therefore, the peak to peak 
time is 0.3948 - 0.1438 = 0.251 years (91.6 days). 
This is only a 1.3% difference with T+ = 90.4 days 
so that for all intents and purposes wf can be viewed 
as the frequency of the regular SEV oscillations. 

Conclusion 
We conclude by summarizing the main results of this 
paper. We derived equation (37) for y2 + z2 from 
which the SEV angle was calculated via equation 
(28). Equation (37) was cast in a form that makes 
apparent the frequencies governing the SEV oscilla- 
tions. We predicted that the regular SEV oscillations 
have a period of T+ = 90.4 days and that  the ampli- 
tude envelope has a period of T- = 13.9 years. The 
period of the SEV oscillations observed on MAP is 
91.3 days. The predicted value of 90.4 days differs 
from this observed value by 1%. It is worth noting 
that the periods T+ = 90.4 days and T-  = 13.9 years 
are results which apply to all Lissajous orbits about 
L2. In contrast, the amplitudes and phase angle de- 
pend on the particular Lissajous in question. 

We showed that a Lissajous closes in 3.47 years 
so that MAP must enter an opening Lissajous if it 
is to avoid Earth shadows for an extended mission 
of four years. Through equation (37) we determined 
that a Lissajous is opening when the phase angle 4 is 
between n and w / 2  and closing when the phase angle 
is between n/2 and 0. The phase angle of MAP was 
found to be 2.88 rad. Therefore MAP entered an 
opening Lissajous. 

The phase angle 4 and the amplitudes A, and A, 
of the MAP Lissajous were obtained by fitting the 
ephemeris data of the MAP trajectory to  the 2, y and 
z equations of motion (16),(17) and (18). These three 
Lissajous parameters were substituted into equation 
(37) for y2 + z2 and the SEV angle was calculated 
via equation (28). A plot of the SEV angle versus 
time was made. In the last section we showed that 
this“predicted” SEV plot matched well with the “ob- 
served” SEV plot of MAP. This shows that the de- 
rived equation (37) for  y2 + z2 is a reliable equation 
for making predictions on the SEV angle. 
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In our shadow analysis, we showed that a space- 
craft orbiting at L2 enters Earth shadows if it reaches 
an SEV angle below 0.5 deg. By extending the “pre- 
dicted” plot of M-4P’s SEV angle, we found that it 
dips below 0.5 deg after 5.8 years(i.e. 5.8 years after 
the spacecraft first crosses the xz plane). Therefore, 
M A P  should avoid Earth shadows for  approximately 
5.8 years. This is well within the requirement that 
MAP should avoid Earth shadows for its extended 
mission of four years. It is worth noting that the 
small stationkeeping maneuvers (M 40 cm/s) that are 
performed approximately every three months simply 
maintain the Lissajous in its current orbit and hardly 
change its parameters. Therefore, the stationkeeping 
maneuvers do not perturb in any significant way the 
5.8 year prediction. 

Figure 6: Observed/True SEV of MAP 

Figure 7: Predicted SEV of MAP (9 Months) 
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